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Introduction

Original formulation of the problem I

Problem 1.1 (A.L. Cauchy)

What are the functions π : R → R satisfying the functional equation

π(x + y) = π(x) + π(y)? (1)

Or, are all the functions π : (R,+) → (R,+) satisfying such
equation continuous?
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Introduction

Original formulation of the problem II

Well, it depends on the (in)famous Axiom of Choice.

Theorem 1.2 (H. Steinhaus)

Let A be a set of positive measure in R, then the difference set

A− A = {a− b
∣∣ a, b ∈ A}

contains an open neighborhood of zero.

It can be shown:

1 If π is measurable and satisfy (1), then it is continuous.

2 However the solution for Cauchy functional equation problem
depends on the Axiom of Choice.
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Introduction

Original formulation of the problem III

3 In ZFC, there exist discontinuous homomorphisms between
(R,+) and (R,+), while there are models of ZF where every
set of R is measurable and then every homomorphism is
continuous.
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Introduction

Alternative approach to the problem I

Definition 1.3

Let (G , ·,−1 ) be a group.

1 G is a Polish group if it is a topological group, there is a
compatible complete metric with the topology of G , and it is
separable.

2 A Polish group is said to satisfy the automatic continuity
property if every homomorphism into a Polish group is
continuous.

3 G is said to be k-Steinhaus, if there is k ≥ 1 such that for
every W ⊂ G covering G by countably many right translates,
W k contains a neighborhood of the identity in G .
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Introduction

Alternative approach to the problem II

Remark 1

For Polish groups, Rosendal [Ros19] narrowed the answer to the
Cauchy functional equation problem to a quadrichotomy,
depending on the use of the Axiom of Choice, provided whether the
characteristic group of π:

N =
⋂

V ,V is a nbd of 1G

π[V ],

1 is trivial,

2 compact and connected,

3 compact,

4 non of the previous.
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Introduction

Alternative approach to the problem III

Problem 1.4

Let (G , ·) be a Polish group. When does G satisfy the automatic
continuity property?

If the group is k-Steinhaus for some k, then it satisfies the
automatic continuity property [RS07].
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First order metric structures

Languages and structures I

Example 2.1 (Languages and structures)

Let’s consider the structure R = (R,+,≤, 0, 1), here the language is
L = {+,≤, 0, 1} consisting of a binary function symbol, a binary
relation symbol, and two constant symbols. All this logical symbols
are interpreted in R as we expect.
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First order metric structures

Languages and structures II

Definition 2.2 (First order metric structures)

Consider the countable first-order relational language

Ldist =
{
Dr

∣∣ r ∈ Q+

}
,

where each Dr is a binary relational symbol and Q+ = Q ∩ [0,∞[.
An Ldist-structure X = ⟨X , {DX

r }r∈Q+⟩ is said to be a metric
Ldist-structure provided that there is a metric d on X so that

X |= Dr (x , y) ⇔ d(x , y) ⩽ r .
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First order metric structures

Remark 2

More generally, if L is a first-order language containing Ldist, then an
L-structure X will be said to be a metric L-structure provided that
the following conditions hold.

1 for every k-ary function symbol F ∈ L, the interpretation

FX : X k → X

is continuous with respect to the metric topology on X ,

2 for every k-ary relation symbol R ∈ L, the interpretation

RX = {(x1, . . . , xk) ∈ X k
∣∣ X |= R(x1, . . . , xk)}

is closed with respect to the metric topology on X . A metric
L-structure X will be said to be separable or complete provided
that the universe X of X is respectively separable or complete
with respect to the associated metric d .
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First order metric structures

Definition 2.3

Let X be a first-order metric structure,

1 an automorphism of X is a bijection g : X → X that preserves
every symbol in L.

2 note that under the composition of functions, Aut(X ) becomes
a group.

3 When X is a uncountable separable complete metric space,
Aut(X ) will henceforth be given its topology of pointwise
convergence on (X , d).

Example 2.4

When L = Ldist an automorphism is just a surjective isometry of X ,
Isom(X, d), as they only need to preserve the distance predicate
symbols Dr
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First order metric structures

Note that the metric d on X induces a compatible metric d∞ on
each X k by the formula

d∞(a, b) = max
i

d(ai , bi )

Definition 2.5

For a a finite tuple in X and ε > 0 :

1 Define
N(a, ε) = {g ∈ Aut(X )

∣∣ d∞(ga, a) < ε}

and observe that these sets are a neighbourhood basis at the
identity of Aut(X ).

2 The the orbit of the tuple a under the action of Aut(X ) is the
set

O(a) =
{
ga

∣∣ g ∈ Aut(X )
}
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First order metric structures

Definition 2.6

1 For a tuple a, Aut(X , a) is the pointwise stabilizer of a, i.e, the
automorphisims of X that fixes a,

Aut(X , a) = {g ∈ Aut(X )
∣∣ ga = a}

2 A family B ⊆
⋃

k⩾1 X
k is said to be a basis for Aut(X )

provided that, for all tuples a and ε > 0, there are b ∈ B and
η > 0 so that

Aut(X , b) ⊆ Aut(X , a) and N(b, η) ⊆ N(a, ε).

3

O(b/a) =
{
c
∣∣ O(c , a) = O(b, a)

}
= Aut(X , a)·b.
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First order metric structures

Hrushovski and Extension Properties I

Definition 2.7

A first-order structure X is said to have the Hrushovski property
provided that, for any finite collection {ϕi}i∈I of isomorphisms

Ai
ϕi−→Bi

between finitely generated substructures Ai ,Bi ⊆ X , there is a
finitely generated substructure D ⊆ X containing all the Ai and
automorphisms fi ∈ Aut(X ) so that each fi extends ϕi and leaves D
invariant.
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First order metric structures

Hrushovski and Extension Properties II

Definition 2.8

Assume also that A, B and C are substructures of a first-order
structure X with A ⊆ B ∩ C and let D denote the substructure of X
generated by B ∪ C. We say that B is independent from C over A,
written

B |⌣
A
C,

provided that whenever ϕ and ψ are automorphisms of respectively
B and C, both leaving A invariant and so that ϕ|A = ψ|A, then
there is an automorphism σ of D extending both ϕ and ψ.
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First order metric structures

Hrushovski and Extension Properties III

Definition 2.9

A first-order structure X is said to have the extension property
provided that, for all finitely generated substructures A, B and C of
X satisfying A ⊆ B ∩ C, there is some g ∈ Aut(X ) so that
g |A = idA and

B |⌣
A
g [C].
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First order metric structures

Main result

Theorem 2.10 (C. Rosendal, L. Suarez)

Let X be a separable complete metric L-structure in a countable
language L ⊇ Ldist and assume that X has the extension and
Hrushovski properties. Fix also a basis B for Aut(X ) and suppose
also that, for all a ∈ B and ε > 0,

int
{

(g , f ) ∈ N(a, ε) × Aut(X )
∣∣ O(a/ga) ∩ O(f a/a) ̸= ∅

}
̸= ∅.

Then Aut(X ) has the automatic continuity property.

Here we were able to show that Aut(X ) is k-Steinhaus with
(interesting fact) k = 64.
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Examples

The Urysohn space I

The Urysohn metric space U first constructed by P. S. Urysohn is a
separable complete metric space satisfying the following metric
extension property.

For any finite metric space X , any subspace Y ⊆ X and
any isometric embedding

Y
ϕ−→ U,

there exists an extension ϕ̃ of ϕ to an isometric embedding

X
ϕ̃−→ U.

As shown by Urysohn, separability, completeness and the extension
property completely determine U up to isometry and also imply that
U is universal for all separable metric spaces, i.e., contains an
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Examples

The Urysohn space II

isometric copy of every separable metric space. The Urysohn space
U can be seen as a complete metric structure in the language Ldist
and note that its automorphism group is nothing but the group
Isom(U) of all isometries of U equipped with the topology of
pointwise convergence on U. M. Sabok [Sab19] showed that Iso(U)
satisfies the automatic continuity property. However, using Theorem
2.10 we were able to provide a simpler proof of that fact.
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Examples

The measure algebra I

Let (X ,Σ, µ) be a standard probability space

1 We will define Measµ as the quotient of the Boolean algebra Σ
by the ideal of null sets.

2 Measµ becomes a complete metric space under the metric
d
(
[A], [B]

)
= µ(A△B).

3 Observe that Observe also that the Boolean operations ∨, ∧
and ¬ are continuous functions on the metric space Measµ and
hence the latter can be seen as a separable complete metric
Boolean algebra structure with constants 0 and 1.
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Examples

The measure algebra II

In particular, the automorphism group Aut(Measµ) is Polish in the
topology of pointwise convergence with respect to the metric d . I.
Ben Yaacov, A. Berenstein, and J. Melleray [BYBM13] showed that
Aut(Measµ) satisfies the automatic continuity property. Again, by
using Corollary 2.10 we were able to provide a simplier proof of the
fact, only relying in the measure theoretic properties of measurable
sets, seen as atoms in the Boolean algebra Aut(Measµ).
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Examples

The Hilbert space

Problem 3.1 (Not easy!)

Let H be a separable infinite dimensional Hilbert space and let U(H)
be its unitary group, meaning,

U(H) = {u ∈ B(H) : uu∗ = u∗u = I}.

with its strong operator topology, i.e, pointwise convergence
topology in U(H). Does U(H) satisfy the automatic continuity
property?
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